邱松
- 单位:中国科学院苏州纳米技术与纳米仿生研究所
- 地址:江苏省苏州工业园区若水路398号
- 邮编:215123
- 邮箱:sqiu2010@sinano.ac.cn
个人简历/Personal resume
邱松,中国科学院苏州纳米所先进材料部,研究员,博士生导师。2005年获得吉林大学高分子化学与物理博士学位。2005-2008年于德国Wuppertal大学进行博士后研究。2010年加入中国科学院苏州纳米所,主要从事半导体碳纳米管高纯度分离、单手性碳管可控分离、大面积碳管取向阵列制备以及其在新型电子器件与电路中应用研究。目前在Adv. Mater.,Nature Comm., Adv. Sci.,Adv. Fun. Mater.等学术期刊发表论文40余篇,已授权国内发明专利十余项,美国专利2项、日本、韩国专利各1项。参与撰写中英文专著2部。主持并参与十余项国家级研发项目(包括国家重点研发计划、973项目及多项装备类项目等)。
在研项目
1. 国家重点研发计划—变革性技术:克量级单一手性碳纳米管制备及其光电集成关键技术研究 2020-2025;
2. 国家重点研发计划-先进电子专项:大面积印刷TFT阵列的制备及关键技术,2016-2020;
3. 自然科学基金面上项目:单手性碳纳米管的连续梯次分离及其近红外II区光电性能研究,2021.-2024;
4. 广东省重点领域研发计划:碳纳米管印刷TFT 技术及其应用,2019-2021;
5. 中国科学院前沿科学重点项目:手性碳管分离与器件应用,2017-2021;
6. 自然科学基金面上项目:单一手性碳纳米管分离及其电致变色效应研究,2018- 2021。
研究方向/Research direction
半导体型碳纳米管的可控分离与器件应用
半导体型碳纳米管(s-SWNTs)是一种优异的半导体纳米材料,被认为是最有希望取代硅延续摩尔定律的半导体材料之一。获得高纯度、高质量的s-SWNTs是实现其在电子及光电器件等领域的材料基础和应用前提。近期主要研究内容包括以下几方面:
1. 超高纯度半导体碳纳米管的分离与制备;
2. 单手性碳纳米管的分离与应用;
3. 纳米碳材料的电子器件与光电器件应用。
论文专著/The monograph
1. HJ Wen et al., Length-dependent alignment of large-area semiconducting carbon nanotubes self-assembly on a liquid–liquid interface, Nano Research, 2022, accepted
2. J Yang et al., Laminated three-dimensional carbon nanotube integrated circuits, Nanoscale, 2022, 14, 7049-7054. doi.org/10.1039/D2NR01498J.
3. B Li et al., Patterning of Wafer-scale MXene Films for High-performance Image Sensor Arrays, Adv. Mater. 2022, doi.org/10.1002/adma.202201298.
4. HZ Ni et al., High Performance Carbon Nanotube Thin-Film Transistor Encapsulated with Laminated HfO2/Al2O3 by ALD, IEEE Transactions on Electron Devices (IEEE-TED), 2022, 69, 3, 1069-1076. doi.org/10.1109/TED.2022.3141036.
5. YF Guo et al., Soft-lock drawing of super-aligned carbon nanotube bundles for nanometer electrical contacts, Nature Nanotechnology, 2022, 17, 278-284. doi.org/10.1038/s41565-021-01034-8.
6. YH Li et al., High-purity Chiral Carbon Nanotubes with 1.2 nm-diameter for High-performance Field-effect Transistors, Adv. Fun. Mater., 2021, 32(1), 2107119. DOI:10.1002/adfm.202107119.
7. J. Yao et al., Rapid annealing and cooling induced surface cleaning of semiconducting carbon nanotubes for high-performance thin-film transistors, Carbon, 2021, 184, 764-771 doi.org/10.1016/j.carbon.2021.08.076.
8. QB Zhu et al., A Flexible Ultrasensitive Optoelectronic Sensor Array for Neuromorphic Vision Systems, Nature Communication, 2021, 12(1), 1798. doi.org/10.1038/s41467-021-22047-w.
9. YJ Li et al., Monolithic 3D integration of Logic, Memory and Computing-In-Memory for One-Shot Learning, IEEE International Electron Devices Meeting (IEDM), 2021, oral.
10. M. Chen, et al., A FinFET with one atomic layer channel, Nature Communication. 2020, 11, 1205.
11. TY Qu, et al. A Flexible Carbon Nanotube Sen‐Memory Device, Adv. Mater. 2020, 32, 9, 1907288 .
12. B. Gao et al. Assembly of Aligned Semiconducting carbon nanotubes via Introducing Inter-Tube Electrostatic Repulsion, Carbon, 2019, 146, 172-180.
13. TY Zhao, et al. Flexible 64×64 Pixel AMOLED Displays Driven by Uniform Carbon Nanotube Thin-film Transistors, ACS Applied Materials & Interfaces, 2019, 11, 12,11699.
14. ZX Lv, et al. Controllable etching-induced contact enhancement for high-performance carbon nanotube thin-film transistors, RSC Advance, 2019,9, 10578-10583.
15. S Qiu, et al. Solution-processing of High-Purity Semiconducting Single-Walled Carbon Nanotubes for Electronics Devices, Adv. Mater., 2018, 31, 9, 1800750.
16. BW Wang, et al. Continuous fabrication of meter-scale single-wall carbon nanotube films and their use in flexible and transparent integrated circuits, Adv. Mater., 2018, 30(32).
17. YY Chen, et al. High-throughput fabrication of flexible and transparent all-carbon nanotube electronics based on a photosensitive dry film, Advanced Science, 2018, 5(5), 1700965.
18. Y. He, et al. Thiophene-containing polymer on sorting semiconducting single-walled carbon nanotubes, Polymer, 2018, 159, 59-63
19. XQ Yu, et al. Recycling Strategy for Fabricating Low-Cost and High Performance Carbon Nanotube TFT Devices, ACS Appl. Mater. Interfaces, 2017, 9, 15719−15726.
20. Y. Yang, et al. Low Hysteresis Carbon Nanotube Transistors Constructed via a General Dry-Laminating Encapsulation Method on Diverse Surfaces, ACS Appl. Mater. Interfaces, 2017, 9, 14292–14300.
21. Y. He, et al. A novel strategy for high-performance transparent conductive films based on double-walled carbon nanotubes, Chemical Communications, 2017, 53, 2934--2937.
22. D. Liu, et al. A Mixed-Extractor Strategy for Efficient Sorting of Semiconducting Single-Walled Carbon Nanotubes, Advanced Materials, 2017, 29(8), 1603565.
23. JT Gu, et al. Solution-processable High-purity Semiconducting SWCNTs for Large-area Fabrication of High-performance Thin-film Transistors, Small, 2016, 12(36), 4993-4999.
24. J. Han, et al. A photodegradable hexaaza-pentacene molecule for selective dispersion of large-diameter semiconducting carbon nanotubes, Chemical Communications, 2016, 52(49), 7683-7686.
25. QY Ji, et al. Photodegrading hexaazapentacene dispersant for surface-clean semiconducting single-walled carbon nanotubes, Carbon, 2016, 105, 448--453.
26. Y. Liu, et al. Contact-dominated transport in carbon nanotube thin films: toward large-scale fabrication of high performance photovoltaic devices, Nanoscale, 2016, 8(39), 17122--17130.
27. BY Chen, et al. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits, Nano Letters, 2016, 16 (8), 5120-5128.
28. Y. Liu, et al. Room Temperature Broadband Infrared Carbon Nanotube Photodetector with High Detectivity and Stability, Advanced Optical Materials, 2016, 4(2), 238–245.
29. J. Han, et al. Versatile Approach to Obtain High-Purity Semiconducting Single-Walled Carbon Nanotubes Dispersion with Conjugated Polymers. Chemical Communications, 2015, 51, 4712 – 4714.
30. N. Lv, et al. Synthesis, Properties, and Structures of Functionalized peri-Xanthenoxanthene, ORGANIC LETTERS, 2013, 15(10),2382–2385.
31. HB Li, et al. Designing large-plane conjugated copolymers for the high-yield sorting of semiconducting single-walled carbon nanotubes. Chemical Communications 2013, 49(89), 10492--10494.